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The rate at which fully facetted nonequilibrium shaped parti-
cles and pores approach their equilibrium (Wulff) shape via
surface diffusion was modeled, and calculations relevant to
alumina were performed to guide experimental studies. The
modeling focuses on 2-D features, and considers initial parti-
cle/pore shape, size, surface energy anisotropy, and tempera-
ture (surface diffusivity) as variables. The chemical potential
differences driving the shape change are expressed in terms of
facet-to-facet differences in weighted mean curvature. Two
approaches to modeling the surface flux are taken. One
linearizes the difference in the mean chemical potential of
adjacent facets, and assumes the flux is proportional to this
difference. The other approach treats the surface chemical
potential as a continuous function of position, and relates the
displacement rate of the surface to the divergence of the
surface flux. When consistent values for the relevant materials
parameters are used, the predictions of these two modeling
approaches agree to within a factor of 1.5. As expected, the
most important parameters affecting the evolution times are
the cross-sectional area (volume in 3-D) and the temperature
through its effect on the surface diffusivity. Pores of microme-
ter size are predicted to reach near-equilibrium shapes in
reasonable times at temperatures as low as 1600°C. The
detailed geometry of the initial nonequilibrium shape and the
Wulff shape appear to have relatively minor effects on the
times required to reach a near-equilibrium shape.

I. Introduction

THE shape changes undergone by solid particles, and by precip-
itates and cavities (pores) within solids, constitute an important

element of microstructural evolution in materials. Such morpho-
logical changes are evident during sintering and, more generally,
occur whenever materials are held at elevated temperatures for
prolonged periods. The mass flows responsible for these shape

changes can occur predominantly through the vapor phase, through
the bulk, along a solid–vapor interface (a surface) or along a
solid–solid interface (a grain boundary). The rate of shape change
can be limited by the rate of mass arrival via gas, bulk, surface, or
grain boundary diffusion. Alternatively, the shape change rate can
be limited by the rate at which mass can be incorporated at a mass
sink or can be released or supplied by a mass source. The general
term surface-attachment-limited kinetics (SALK) is used in this
paper to refer to such situations, in which the rate of a nucleation
step or of an attachment/detachment step limits the shape change
rate.

Models treating a variety of diffusion-rate-limited shape
changes in idealized materials with isotropic surface energies were
developed during the 1950s and 1960s. These included treatments
of surface (scratch) smoothing,1 grain boundary grooving,2 parti-
cle sintering,3–5 and Rayleigh instabilities of solid rods and
cylindrical cavities in solids.6 These models served two important
roles. In cases where the relevant transport data were available, the
models could be used in a predictive manner. In cases where
transport data were absent, the experimental results could be
evaluated using these models to provide needed transport data.
Most of the surface diffusion data available for ceramic systems
have been inferred from rates of morphological change assumed to
be controlled by surface diffusion.

Subsequent treatments of the aforementioned processes have
focused on extending their range of applicability, and examining
the behavior of less idealized systems. Accordingly, some efforts
have focused on evaluating the effects of higher-order (nonlinear)
terms on the predictions of the models and improving the accuracy
of predictions for more advanced stages of these processes (e.g.,
Refs. 7 and 8). Others have focused on the effects of more complex
initial or other boundary conditions on the predicted behavior (e.g.,
Refs. 9 and 10). In general, these analyses have retained the
assumption of isotropic surface energy.

Other modeling efforts have focused on incorporating the
effects of surface energy anisotropy on morphological evolution.
For a particle or cavity of fixed volume held at constant temper-
ature, the driving force for shape changes is the associated
reduction in the total surface energy. In many crystalline solids, the
lowest energy form of a particle or cavity includes facets, and the
equilibrium or Wulff shape can be fully facetted. The Wulff
theorem prescribes that the equilibrium shape of such a particle or
cavity is that for which
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where li is the physical distance from the center of mass of the
crystal to theith facet measured along a normal to theith facet, and
gi is the energy per unit area of theith facet.11 Surface energy
anisotropy will alter the final state of a system and influence the
driving forces and kinetics of the processes that transform it from
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an initial nonequilibrium state.12,13 The appearance of facets can
also lead to a change in the rate-controlling mechanism.

The influence of surface energy anisotropy and facetting on the
energetics and kinetics of shape changes has become the topic of
increasing attention. Bonzel, Mullins, and their collaborators have
examined the effect of surface energy anisotropy on scratch
smoothing behavior and have developed elegant new experimental
methods and refined theoretical models.14–19Taylor, Cahn, Carter,
and colleagues20–22 have addressed a broad range of problems
involving shape changes in facetted crystals, and have provided
theoretical descriptions of shape changes controlled by both
surface diffusion and by SALK.

Within the past decade, methods that allow the introduction of
large numbers of cavities of controlled size and shape into
single-crystal substrates of controlled surface orientation and their
subsequent conversion to intragranular defects have been devel-
oped. These methods have been used to examine the high-
temperature properties of surfaces and interfaces in ceramics.23–33

Since it is possible to generate defects with shapes that differ
substantially from the equilibrium shape, arrays of such defects
can be used as a vehicle for systematic investigation of the kinetics
of shape evolution. Moreover, micrometer-sized pores can easily
be produced by microlithographic methods, and it is expected that
pores of this size (or smaller) are necessary to reduce the
equilibration time to reasonable levels.34–36Thus,if pores of such
experimentally accessible sizes approach their equilibrium shape
in reasonable times, then the Wulff shape (of a large number of
cavities under prescribed conditions) can be determined.

For such small intragranular cavities, surface diffusion is
expected to be the dominant diffusional process in alumina. Two
treatments of the surface-diffusion-controlled shape evolution rate
of fully facetted rodlike pores have recently been presented.34,37

For this 2-D case, at fixed temperature, the predicted times to
equilibrate pores of fixed cross-sectional area and common initial
shape in alumina differed by a factor of'103. Errors in both
models caused this large disparity.†† Compounding this, different
geometric parameters were used to track the evolution of the
system, and thus a direct comparison of the predictions was
cumbersome.

This paper reevaluates the two approaches to modeling surface-
diffusion-controlled pore shape evolution and isolates the effects
of different modeling assumptions on the predicted evolution rates.
A key finding is that when consistent values for the relevant
materials parameters are used, these two modeling approaches
yield predictions that agree to within a factor of 1.5. This close
agreement has several important implications. The 2-D result
suggests that if surface diffusion limits the evolution rate, it should
be possible (with patience) to reach near-equilibrium shapes for
micrometer-size pores that can readily be fabricated using micro-
lithographic methods. It also suggests that the approximate method
described in Refs. 37 and 38 can be extended from the 2-D cases,
which can easily be treated using the exact method,34 to the more
experimentally relevant 3-D cases where the exact method is
extremely difficult to apply. This is the subject of a companion
paper,39 in which the predictions of the 3-D model are compared
to the results of model experiments assessing pore shape equili-
bration rates, and the role of ledge-producing defects (dislocations)
on evolution rates are discussed. Collectively the results of these
two studies proved useful in guiding the design of experiments
aimed at determining the Wulff shape of doped and undoped
aluminas. The results of the Wulff shape studies will be reported
separately.40–42

II. Background

Modeling the kinetics of shape change for fully facetted
particles and cavities by surface diffusion involves several critical
steps. These include formulating the driving force for shape
changes, developing an equation to describe the surface flux,
relating this flux to a change in particle shape, and solving the
resulting differential equation that specifies the rate of shape
change. In this section, we focus on presenting two different
formulations of the driving force for the shape change. One
assesses the net change of surface energy per mole of mass
transferred from a receding facet to an advancing facet; this
differential geometry approach defines a chemical potential differ-
ence. The second approach assesses the free energy change
associated with surface formation per unit volume swept as a facet
advances. This is the weighted mean curvature20 and allows one to
define the chemical potential on a facet-by-facet basis.

(1) Feature Geometry
The discussion will focus on fully facettedN-sided rodlike

particles or pore channels in a solid. The geometry of interest
consists of anN-gon lying in thex–y plane that extends indefinitely
in thez-direction, as illustrated in Fig. 1. Vectors lying in thex–y
plane extend from an origin 0, toN points,Q1, Q2, Q3, . . . , QN.
TheseN vectors have lengthsl1, l2, l3, . . . , lv, . . . , lN. Normals to
these vectors passing through the pointsQ1, Q2, Q3, . . . , QN

define the facet planes. The edge lengths of theN-gon (the facet
widths), denotede1, e2, e3, . . . , ev, . . . , eN depend upon the
orientations and lengths of theN vectors, and are limited by
intersections with other adjoining facets. The facets form a convex
body enclosing a cross-sectional areaAcs. The volume per unit
depthV9 is Acsz1.

(2) Relationships for an Equilibrium-Shape Crystal
The procedure for determining the equilibrium shape of a 3-D

facetted crystal can be found in standard reference texts (e.g., Ref.
43). It involves minimizing the Helmholtz free energy of a body of
constant volume and numbers of moles at constant temperature.
Since only shape changes are allowed, the problem entails mini-
mizing F 5 (j51

N gjAj at constant volume whereAj is the area of
facet j, and can be solved using the method of Lagrange multipli-
ers. For the fully facetted 2-D crystals/cavities of interest here,V9

††The driving force formulation in Ref. 37 was incorrect. Even when this was
corrected,38 and the same values of materials parameters were used, the disparity
remained large. It was subsequently found that the predicted times in Fig. 8 of Ref.
34 are inconsistent with the stated value of the surface diffusivity; this numerical error
significantly impacts the interpretation of the experimental results presented in Ref.
34. There is also an error in Eq. (5) of Ref. 34. Details are provided in the Results
section of this paper. A short note further detailing and correcting these errors is in
preparation.

Fig. 1. Parameters in a geometric description of a facetted solid rod or a
facetted pore channel.
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is held constant, and a similar minimization procedure leads to a
set ofN equations of the form

O
j51

N
]Aj

]l v
~g j 2 hl j! 5 0 ~for v 5 1, 2, . . . ,N! (2)

whereAj is the area of facetj per unit depth, andh is a Lagrange
multiplier. One possible solution is
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5 . . . 5

gN
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5 h (3)

which is the 2-D analogue of Eq. (1).
The procedures for defining the chemical potential of a crystal

having the Wulff shape are also available in standard texts (e.g.,
Ref. 43). For a facetted crystal having the Wulff shape, the
chemical potential exceeds that of an infinite size crystal by an
amount that is proportional togj /lj

m l1 5 m0 1
V# g1

l 1
5 m0 1

V# g2

l 2
5 . . .

5 m0 1
V# gN

lN
(4)

where m0 is the bulk chemical potential, andV# is the molar
volume. Thus, for a particle with the Wulff shape, the ratiogj /lj
plays the same role asgk in an isotropic system, wherek is the
curvature.

(3) Relationships for a Non-Equilibrium-Shape Crystal
Equation (4) is validonly for a crystal having the equilibrium

shape; for the Wulff shape the chemical potential is the same on all
facets.‡‡ A more general formulation of the chemical potential
beneath a facetted surface, applicable to non-equilibrium-shape
crystals and cavities, was presented by Herring.12 The effect of an
infinitesimal displacement of a plane surface parallel to itself is
considered, and leads to a definition of an area-average potential.
The further extension of this concept has led to the weighted mean
curvature as a means of defining the chemical potential of each
facet. We will define the weighted mean curvature (wmc) to be the
limit of the rate of change of surface energy with respect to the
volume swept as the volume swept goes to zero.§§ Following the
discussion of Taylor20 with the current sign convention, for a
segmentSi of a polygonal surface, the wmc is given by

wmc~Si! 5
1

length~Si!
O
jÞi

d ij fij (5)

where dij is 11 for a convex (positive) crystal, and21 for a
concave (negative) crystal. The termfij is

fij 5
g j 2 cijg i

Î1 2 cij
2 (6)

where

cij 5 nW iznW j 5 unW iuunW juzcosu (7)

andnW i andnW j are the unit normals to surfacesi and j, andu is the
angle between them.

The chemical potential associated with facetj depends on the
wmc of the facet, and is given by

m j 5 m0 1 V# ~wmc! j (8)

The wmc reduces to a form involvinggj /lj when a crystal or cavity
has the equilibrium shape.

(4) Driving Force for Shape Changes
In general, there are two approaches to formulating the driving

force for shape changes. The first computes the free energy change
associated with the transfer of mass from one facet to the other,
determines the free energy change per mole of mass transferred,
and thus defines a chemical potential difference,Dm. The second
approach employs the concept of weighted mean curvature to
specify the chemical potential on each facet, e.g.,m1 andm2, and
evaluates the difference in these chemical potentials,m1 2 m2, to
define a driving force. In this section we apply both of these
methods to the case of a stretched square and a stretched hexagon.
The resulting driving force expressions are used in the modeling to
calculate the shape change rates for these two geometries.

(A) Stretched Square: For the rectangular cross section illus-
trated in Fig. 2(a), the condition of constant volume per unit depth
implies Acs 5 4l1l2 5 constant. LettingF represent the surface
energy per unit depth of crystal in thez-direction, shape changes
that conserve volume and involve normal displacements of the
facets produce a differential surface energy change per unit depth
of crystal given by

~dF!total 5 ~4z1!@g1 dl 2 1 g2 dl 1#

5 ~4z1!Fg2 2 g1

l 2

l 1
Gdl 1 (9)

This expression equals zero when the Wulff condition, Eq. (3), is
satisfied. Whenl2 exceeds the equilibrium value, the term in
brackets is negative, and dF is negative when dl1 is positive.

The transfer of dn moles from a single surface of areaA2 per
unit depth and energyg2 to a single surface of areaA1 per unit
depth and energyg1 produces a differential surface energy change

~dF!231 5 ~2z1!Fg2 2 g1

l 2

l 1
Gdl 1 (10)

The volume per unit depth swept due to the displacement of facet
1 by an amount dl1, dV1, can be related to the number of moles
transferred, dn, and the molar volume,V# , as follows

dV1 < 2l 2z1zdl 1 5 V# dnf dl 1 5
V# dn

2l 2z1
(11)

Inserting this into Eq. (10) and rearranging, the differential energy
change is

~dF!231 5 V# Sg2

l 2
2

g1

l 1
Ddn (12)

The ratio of the free energy change and number of moles
transferred is a chemical potential difference, and thus, we obtain

SdF

dnD
231

5 Dm231 5 m1 2 m2

5 V# Sg2

l 2
2

g1

l 1
D (13)

For the stretched square geometry, one can infer that the term
involving V# g2/l2 is associated withm1 and the term involving
V# g1/l1 is associated withm2. When the geometry is more complex,
it is not always obvious which of thegi /li terms is associated with
which facet. OnlyDm231 is clearly specified.

A treatment of the driving force in terms of weighted mean
curvature explicitly defines the (mean) chemical potential of each
facet. For the simple geometries under discussion here, the wmc

‡‡If Eq. (4) is used to specify the chemical potential of mass on a facet of a
nonequilibriumshape particle, the facet-to-facet chemical potential differences that
are implied would lead to pathological flows; i.e., such definitions of the potential
make the Wulff shape an unstable equilibrium state, and are not pertinent for
nonequilibrium cases.

§§Taylor20 originally defined the weighted mean curvature, wmc, as the negative
of this quantity. In subsequent papers by Cahn and Taylor,21,22and in this paper, the
sign convention is reversed to parallel the sign convention normally used fork.
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values can easily be assessed by examining the surface energy
change per unit volume swept graphically. Figures 3(a) and (b)
show the surface area changes as a result of displacementsdl1 and
dl2. Assessing the surface energy changes and volume swept, it
follows that the wmc of facets 1 and 2, wmc1 and wmc2,
respectively, are

wmc1 5
2g2~dl 1z1!

~2l 2z1!zdl 1
5

g2

l 2
(14a)

wmc2 5
2g1~dl 2z1!

~2l 1z1!zdl 2
5

g1

l 1
(14b)

Applying Eq. (8), the chemical potentials on facets 1 and 2,m1 and
m2, respectively, are

m1 5 m0 1 V# Sg2

l 2
D (15a)

m2 5 m0 1 V# Sg1

l 1
D (15b)

(B) Stretched Hexagon: The geometry of the stretched hexa-
gon (Fig. 4) is slightly more complex than that of the stretched
square, and this has led to differences in the description of the
geometry, and in the choice of metric used to characterize the
approach to equilibrium. For example,Acs can be defined in three

ways

Acs 5 2l 1e1 1 l 1e2 5 l 1e1 1 2l 2e2 5 4e2l 2 2 e2l 1 (16)

where

e1 5
2

Î3
~2l 2 2 l 1! (17a)

e2 5
2

Î3
l 1 (17b)

The constantAcs constraint leads to the following relationship
between dl1 and dl2:

dl 2 5 2
2l 2 2 l 1

2l 1
dl 1 (18)

The surface energy per unit depth of crystal,F, can be written

F 5 O
i51

N

g iAi 5 g12A1 1 g24A2

5 2g1e1z1 1 4g2e2z1 (19)

If we assume that the shape changes involve normal displacements
of facets and maintain symmetry, the differential surface energy
change of unit depth of crystal in response to a shape change at

Fig. 2. Illustration of the two geometries considered, and parameters used in the modeling. The geometry in (a) is referred to in the text as a stretched square,
while that in (b) is termed a stretched hexagon.

Fig. 3. Illustration of the surface area and surface energy changes associated with the morphological evolution of a stretched square. When these surface
energy changes are divided by the volume swept, the wmc of the displaced facets is determined.
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constantV9 will be given by

~dF!total 5 F2zg1S2
4

Î3

l 2

l 1
dl 1D 1 4zg2S 2

Î3
dl 1DG z1

5
8

Î3F g2 2 g1

l 2

l 1
Gdl 1z1 (20)

Wheng1/l1 5 g2/l2, dF equals zero as it should. Whenl2 exceeds
the equilibrium value, the term in brackets is negative, and dF is
negative when dl1 is positive.

The differential change in surface energy when one transfers dn
moles from the two identical flanking surfaces of areaA2 per unit
depth and energyg2 to a single surface of areaA1 per unit depth
and energyg1 is

~dF!231 5 F1zg1S2
4

Î3

l 2

l 1
dl 1D 1 2zg2S 2

Î3
dl 1DG z1

5
4

Î3Fg2 2 g1

l 2

l 1
Gdl 1z1 (21)

The volume per unit depth swept due to the displacement of facet
1 by an amount dl1, dV1, can again be related to the number of
moles transferred, dn, and the molar volume,V# . For this geometry

dV1 < e1z1zdl 1 5 V# dnf dl 1 5
V# dn

e1z1
(22)

As a result,

SdF

dnD
231

5 Dm231 5 m1 2 m2

5
4

Î3
Sg2 2 g1

l 2

l 1
D V#

e1z1
z1 5 2V# S l 1g2 2 l 2g1

l 1~2l 2 2 l 1!
D

(23)

The numerator goes to zero wheng1/l1 5 g2/l2. The chemical
potential difference goes to infinity when 2l2 5 l1; geometrically,

when this condition is satisfied, the length of facet 1,e1, goes to
zero, as shown by Eq. (17).

The same result can be obtained by evaluating the difference in
wmc of facets 1 and 2. Figures 4(a) and (b) illustrate the surface
area and surface energy changes as a result of displacementsdl1
anddl2, respectively. For facet 1, the surface area per unit depth is
e1z1, and the volume swept by a displacementdl1 is e1z1zdl1. The
displacement of facet 1 bydl1 increases the area of each of the
inclined facets of energyg2 by an amount (2/=3) dl1z1, resulting
in a surface energy change, (4/=3)g2 dl1z1. In addition, the
displacement decreases the length of facet 1, by an amount
(1/=3) dl1z1 at each end, resulting in a surface energy decrease of
(2/=3)g1 dl1z1. It follows that wmc1 is

wmc1 5 S 4

Î3
g2dl 1z1 2

2

Î3
g1dl 1z1DY 2

Î3
~2l 2 2 l 1!dl 1z1

5
2g2 2 g1

2l 2 2 l 1
(24)

At equilibrium, this ratio is equivalent tog1/l1. The displacement
of each inclined facet by an amountdl2 extends facet 1 by
an amount (2/=3) dl2z1, and thus the energy increase is
(2/=3)g1 dl2z1. The volume swept is'e2z1zdl2, and thus,

wmc2 5 S 2

Î3
dl 2z1Dg1YS 2

Î3
l 1z1Ddl 2

5
g1

l 1
(25)

which is equal tog2/l2 at equilibrium. The driving force for
transfer of mass from facet 2 to facet 1 is

Dm231 5 m1 2 m2

5 V# FS2g2 2 g1

2l 2 2 l 1
D 2 Sg1

l 1
DG

5 2V# S l 1g2 2 l 2g1

l 1~2l 2 2 l 1!
D (26)

Fig. 4. (a) Illustration of the surface area and surface energy changes associated with the morphological evolution of a stretched hexagon. When the surface
energy changes caused by the displacement of facet 1 are added and then divided by the volume swept, the wmc of facet 1 is determined. (b) Illustration
of the surface area and surface energy changes associated with the morphological evolution of a stretched hexagon. The wmc of facet 2 is determined to be
g1/l1.
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For both the stretched square and the stretched hexagon, the
chemical potential on a faceti is affected by the energy of the
adjacent facets,gj. The pairing ofmi with the ratiogi /li obscures
this and results in relationships valid only when the crystal or
cavity has the equilibrium shape.

III. Modeling

When a facetted crystal or a facetted cavity has the equilibrium
shape, the wmc and the chemical potential will be constant, and
there is no driving force for mass transfer and shape changes. In
contrast, when the shape deviates from the Wulff shape, the wmc
and the chemical potential will vary from facet to facet on the
particle or pore surface. This spatial variation in the chemical
potential creates a driving force for mass transfer that allows the
system to approach the equilibrium shape, albeit asymptotically.

For mass transport controlled by surface diffusion, the surface
flux, Js, can be related to the gradient in the chemical potential at
the surface. Fick’s first law of diffusion for the surface flux (in
atoms/(m2zs)) can be written as

Js 5 2
Ds

V# kT

dm

dx
(27)

where Ds is the surface diffusion coefficient,V# is the molar
volume,k is Boltzmann’s constant, andT is absolute temperature.
The local rate of mass accumulation, and thus the surface displace-
ment rate, hinge on the gradient in the flux. The normal velocity of
a surface,Vn, can thus be expressed as

Vn 5 2
dJs

dx
dsV 5

dsDs

kT Sd2m

dx2D (28)

whereds is the width over which diffusion is enhanced, andV is
the atomic volume.

If the chemical potential on the facet of a nonequilibrium shape
crystal were assumed constant on the entire facet, then chemical
potential discontinuities would exist at facet edges. Yu and
Hackney44 formulated the positional dependence of the surface
potential on a facet in a nonequilibrium shape crystal, using an
approach suggested by Herring.12 When facets undergo uniform
normal displacements the rate of mass deposition or removal must
be uniform on each facet. The gradient or divergence of the flux
must be constant on each facet, and it follows from Eq. (28) that
¹2m must be constant on each facet. Yu and Hackney44 treated the
case of a stretched square evolving by surface diffusion. General-
ized procedures were developed independently by Carteret al.,
and presented in Refs. 22 and 34. If the position on facets 1 and 2
in the direction of flow is measured by the variablesx and y,
respectively, then for the 2-D problems of interest, a possible
general solution to the chemical potential variation across facets 1
and 2 takes the form

ms
~1!~ x! 5 c1x

2 1 c2x 1 c3 (29a)

ms
~2!~ y! 5 d1y

2 1 d2y 1 d3 (29b)

wherec1, c2, andc3 andd1, d2, andd3 are constants whose values
are chosen to match the boundary conditions. Theaveragevalue of
the chemical potential on faceti is equated to that dictated by the
wmc of the facet, Eq. (8). The potential and the potential gradient
must be continuous at the facet edge. Symmetry considerations
provide additional boundary conditions.

For the stretched square, takingx 5 0 and y 5 0 as the
midpoints of facets 1 and 2, respectively,

ms
~1!~ x! 5

3

2
V# F ~g1/l 1! 2 ~g2/l 2!

l 2~l 2 1 l 1!
GSx2 2

l 2
2

3D 1 m0 1 V# Sg2

l 2
D

(30a)

ms
~2!~ y! 5 2

3

2
V# F ~g1/l 1! 2 ~g2/l 2!

l 1~l 2 1 l 1!
GSy2 2

l 1
2

3D
1 m0 1 V# Sg1

l 1
D (30b)

The same general method can be applied to the stretched hexagon.
However, in that case, the potential on facet 2 is asymmetric about
the midpoint; the gradient of the surface potential equals zero at
the junction point of the two inclined facets located a distancel2
from the origin. These equations can then be used in conjunction
with Eq. (28) to prescribe an exact value for the displacement rate
of the facets.

This approach is relatively simple to apply to 2-D problems, but
satisfying the boundary conditions becomes very difficult when
the diffusion problem is three-dimensional. Thus, a simpler ap-
proach to estimating the rate of facet displacement, one that is
more easily applied to 3-D problems, was pursued.

Regardless of the form of the chemical potential gradient on a
facet, the total mass arrival rate for a facet is the sum of the mass
flow rates at the facet edges. These flow rates are dictated by the
potential gradients at the facet edges. If we implicitly assume that
the deposition rate is uniform on the facet, the problem reduces to
one of estimating the gradients at the facet edges. Kitayama45 has
approximated the gradient at the facet edge as the difference in the
mean potentials on the adjoining facets divided by an “effective
diffusion distance.” As a result, Eq. (27) is applied to the edge, and
modified to be

~ Js!231 5 2
Ds

V# kT

Dm# 231

Dx231
(31)

where Dm# 231 5 m# 1 2 m# 2 represents the difference in mean
potential, andDx231 is the effective diffusion distance. The mean
chemical potentials,m# 1 andm# 2, are calculated using Eq. (8). For
the stretched square, the potential will be either a minimum or
maximum at the facet centers, and either a maximum or minimum
at the facet edges, depending upon whether the facet acts as a mass
sink or a mass source. If the center-to-edge variation of potential
with position is linearized, and Eq. (8) is used to define the mean
potential, then the potential is at its mean value for facets 1 and 2
at distances (1⁄2)l1 and (1⁄2)l2 from the corner, respectively. The
sum of these distances is used to scale the potential difference, and
is referred to as an effective diffusion distance. (For the stretched
hexagon,Dx231 is (e1/4) 1 (e2/2).)

The two approaches are compared in Fig. 5 for a stretched
square. The parabolic potentials are drawn, and compared with the
facet-edge gradient that results whenDx231 is set equal to
1⁄2(l1 1 l2). Note that the slopes are similar, and that the quality of
the agreement hinges on the choice ofDx231. For the given
choice, the parabolic potential leads to a potential gradient at the
facet edge that is 1.53 that for the “linearized” gradient. As a
result, the times predicted by the linearized gradient method for a
given change of shape will be 1.53 the value obtained by the more
exact method. Similar comparisons for the case of a stretched
hexagon, with the effective diffusion distance taken to be (e1/4) 1
(e2/2), lead to a factor of 1.5 difference in the edge fluxes, with the
continuous potential again yielding the higher evolution rate.

The calculations of the displacement rates for facet 1 for both
the stretched square and the stretched hexagon involve the follow-
ing steps. The infinitesimal volume change of a single facet of type
1, dV1, during an infinitesimal time interval dt is expressed as

dV1 5 A1dl 1 5 JszdszLzVzdt (32)

whereA1 is the area per unit depth of facet 1,ds is taken here to
be equal toV1/3, andL is the total common or shared edge length
between the interacting facets. The productdszL represents the area
through which diffusion is occurring. This equation can be
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rearranged and combined with Eq. (31) to yield the following
differential equation for the displacement rate of facet 1

dl 1

dt
5

JszdszLzV

A1

5 2
DsV

4/3

V# kT

L

A1

Dm# 231

Dx231
(33)

For the stretched square, withDm# 231 given by Eq. (13),Dx231

set equal to1⁄2(l1 1 l2), and l2 set equal toAcs/4l1, the potential
gradient can be written as

SDm#

DxD
StrSq

5

2V# Sg2

l 2
2

g1

l 1
D

l 1 1 l 2

5
8V#

Acs
Sg2z4l 1

2 2 g1zAcs

4l 1
2 1 Acs

D (34)

The potential gradient at the corner (x 5 l2 andy 5 2l1) implied
by Eq. (30) is 1.53 this value. For unit depth of the stretched
square, takingA1 5 2l2z1, L 5 2, and using Eq. (34), Eq. (33) takes
the form

Sdl 1

dt D
StrSq

5 2
32DsV

4/3

kT

1

Acs
2

g2z4l 1
3 2 g1zl 1Acs

4l 1
2 1 Acs

(35)

Letting Req 5 g2/g1, this equation can be re-expressed as

Sdl 1

dt D
StrSq

5 2
32DsV

4/3g1

kT

1

Acs
2

l 1~Reqz4l 1
2 2 Acs!

4l 1
2 1 Acs

(36)

Solving for dt and integrating leads to

~t 2 t0!StrSq5 S kT

DsV
4/3g1

DFAcs
2

32
zlnS l 1

~t!

l 1
~t0!D

2
Acs

2 ~1 1 Req!

64Req
zlnS Acs 2 4~l 1

~t!!2Req

Acs 2 4~l 1
~t0!!2Req

DG (37)

wherel1
(t0) is the value ofl1 at time t0 and l1

(t) is the value ofl1 at
time t. SinceAcs is homogeneous of degree 2, a uniform enlarge-
ment of the particle by a factorl increasesAcs by a factorl2, and

thus, the evolution timet scales withl4 as would be expected from
the Herring scaling laws.46

For the case of the stretched hexagon,Dm# 231 is given by Eq.
(26), and the effective diffusion distance is (e1/4) 1 (e2/2). Using
Eq. (17), the potential gradient can be written as

SDm#

DxD
StrHex

5
2Î3V#

~2l 2 1 l 1!
S2g2 2 g1

2l 2 2 l 1
2

g1

l 1
D (38)

If we solve Eq. (29) for the stretched hexagon, and evaluate the
potential gradient at the corner, we again find that it is 1.53 that
obtained with a linearized potential. For a segment of crystal of
unit depth, takingA1 5 e1z1, L 5 2, using Eq. (17) to re-express
e1, and Eq. (16) to eliminatel2, Eq. (33) takes the form

Sdl 1

dt D
StrHex

5 2
96DsV

4/3

kT S l 1@2l 1
2~4g2 2 g1! 2 Î3Acsg1#

~Î3Acs 1 6l 1
2!~Î3Acs 2 2l 1

2!2D
(39)

With Req 5 g2/g1 the integrated form of this expression can be
written as

~t 2 t0!StrHex5 S kT

DsV
4/3g1

DF Acs~5Req 2 2!

8Î3~4Req 2 1!2 ~~l 1
~t!!2 2 ~l 1

~t0!!2!

2
~~l 1

~t!!4 2 ~l 1
~t0!!4!

32~4Req 2 1!
1

Acs
2

32
zlnS l 1

~t!

l 1
~t0!D

2
Acs

2 ~2Req 2 1!2~2Req 1 1!

8~4Req 2 1!3 zlnS Î3Acs 1 2~l 1
~t!!2 2 8~l 1

~t!!2Req

Î3Acs 1 2~l 1
~t0!!2 2 8~l 1

~t0!!2Req
DG

(40)

The predicted times are a factor of 1.5 greater than those predicted
for the parabolic potential.

IV. Results

In this section we provide the results of three sets of calculations
performed using values of materials parameters specific to alumi-
num oxide. These calculations examine the effect of (1) crystal or
cavity size and shape, (2) temperature, and (3) the surface energy
anisotropy on shape relaxation kinetics.

(1) Effect of Crystal (Cavity) Volume and Shape on
Relaxation Rates

The results of the modeling for both the stretched square and
stretched hexagon geometry were used to calculate aspect ratio–
time trajectories appropriate to alumina. For this purpose, the
temperature was fixed at 1600°C, and an “average” value of the
surface diffusivity (Ds) of 1.82 3 10211 m2/s was assumed. The
relevant volumeV was taken to be 2.113 10229 m3,47 and the
surface thicknessds was assumed to be of the order ofV1/3. The
surface energies,g1 andg2, were assumed to be equal and 1 J/m2.
The initial value ofRa (5 w/d) was taken to be 15. Figure 6plots
the times required to reduce the aspect ratioRa from 15 to the
indicated values ofRa for both a stretched hexagon and a stretched
square of fixed cross-sectional area,Acs 5 10211 m2. Aspect
ratio–time trajectories for both the linearized and parabolic poten-
tials are shown. The curves terminate when the value ofRa reaches
1.01 times its equilibrium valueReq. The anneal time required for
intermediate changes inRa, e.g., from 10 to 5, is determined by
assessing the difference in anneal time corresponding to these
values ofRa.

Since the time to reach a given value ofRa from a common
initial value is proportional toAcs

2 , the results predict that at
1600°C, features with a cross-sectional area of the order of 1
mm 3 1 mm should reach values ofRa of 1.01Req in 8 h or less.
Using the values forDs (10210 m2/s) andV (6.6 3 10229 m3)
assumed by Choiet al.,34 the predicted relaxation times would be
reduced by a factor'25. Submicrometer-sized features are not

Fig. 5. Comparison of the potential gradients at the edge of a stretched
square when a parabolic potential (pp) is assumed, and when the mean
chemical potential difference between adjacent facets is linearized (lp).

October 2000 The Wulff Shape of Alumina 2567



necessary to achieve near-equilibrium shapes at this temperature.
Similar size scaling of the results in Fig. 6 indicates that pores of
the size examined by Choiet al.34 (Acs # 10213 m2) should reach
near-equilibrium shapes within only a few minutes at 1600°C if
surface diffusion were rate-limiting. The relaxation kinetics sug-
gested by Fig. 8 in Ref. 34 imply that'50 h anneals would be
required for shape equilibration of cavities withAcs 5 10213 m2;
this result is clearly inconsistent with the stated values of materials
parameters.¶¶

A comparison of the evolution kinetics of the stretched square
and the stretched hexagon suggest that the relaxation rates are not
particularly sensitive to the details of the crystal or cavity shape.
This suggests that the more global geometric parameters such as
the w/d ratio and the cross-sectional area, which define the shape
and volume, are the key variables, and an approximate shape can
be used to provide reasonable estimates of the evolution rate. At
least in systems like alumina, where the uncertainty in the
diffusivity is quite large, the details of the facet structure are not
critical for kinetic modeling.

It is also the case that the details of the potential gradient have
only a minor effect on the predicted evolution rates. The displace-
ment rate of a facet hinges on the volume arrival rate, and this is
dictated by the potential gradient at the facet edge. For reasonable
choices of the effective diffusion distance, the potential gradient
predicted using the difference in the mean potentials is close to that
obtained when a parabolic potential is assumed. For both the
stretched square and stretched hexagon, the linearized gradient and

parabolic potential yield results that differ by only a factor of 1.5.
This close agreement suggests that the linearized approach can be
used to provide reasonable estimates in 3-D problems where
solutions that are based on a continuously varying potential on the
surface are more difficult to obtain.

(2) Effect of Temperature
The time to reach a particular state, or to produce a particular

shape change, scales inversely with the diffusion coefficient. In
assessing the surface diffusion data available for alumina, there is
considerable scatter both in the magnitude of the diffusivity at
fixed temperature and in the apparent activation energy.†††For the
present purposes, an average value for the surface diffusivity is
assumed, and the temperature dependence of the average surface
diffusivity is calculated using

Ds 5 D0 exp~2Qs/RT! 5 2360zexp~2506000/RT! ~m2/s! (41)

with the activation energyQs given in J/(degzmol).
To illustrate the effect of temperature, the results for the two

treatments of the stretched hexagon are compared in Fig. 7. An
initial Ra value of 15 is assumed, andAcs is set equal to 10211 m2.
Three temperatures are considered: 1600°, 1800°, and 2000°C.
The predictions indicate that although a particle or pore of order a
few micrometers in size would not equilibrate in an experimentally
accessible time at 1600°C, such a feature is expected to reachRa '
1.01Req in approximately 1 day at 1800°C. At the higher temper-
atures, an even broader size range of features becomes accessible,
and it may be possible to examine scaling law behavior directly.

¶¶The numerical error reflected in Fig. 8 also impacts the interpretation of the
experimental observations in Ref. 34. The persistence of nonequilibrium shapes in
such small facetted cavities suggests that in the absence of ledge-producing defects
such as dislocations, the evolution rates are extremely sluggish, and not controlled by
surface diffusion. Experimental results presented in the companion paper39 also
support this viewpoint. Recent calculations by Mullins and Rohrer48 suggest that the
barrier to the nucleation of new facet layers is extremely large for facets above a
limiting size of'1 nm, making particles/cavities without alternative sources of ledges
(dislocations) unable to adjust their shape.

†††In the scratch smoothing study of Bennison and Harmer,47 an error was made
in converting previously reported values ofDs to thedsDs format and units of m3/s.
Prior data are a factor of 100 too high in their Fig. 1. When this error is corrected, the
data obtained in their study agree much more closely with average values in prior
work.

Fig. 6. Comparison of the predicted time dependencies of the aspect ratio
at 1600°C for stretched squares and stretched hexagons of fixed size.

Fig. 7. Plot of the predicted effect of temperature on the shape equili-
bration kinetics of a stretched hexagon.
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(3) Effect of Surface Energy Anisotropy
In modeling the temporal evolution of particle and pore shapes,

the possibility that different crystal faces would have different
surface energies was incorporated. Previously, in considering the
effects of size, shape, and temperature, the two energiesg1 andg2

were set equal. Under these conditions,Req is unity for the
stretched square. To examine the effects of surface energy anisot-
ropy, two sets of calculations were performed for the stretched
square. In both, the temperature was fixed at 1600°C, andAcs was
set equal to 10211 m2. A range ofReq values, from 0.5 to 2.0, was
then considered. In one calculation, the value ofg1 is held fixed at
1 J/m2, and changes inReq are accommodated by changing the
value of g2; in this case, the average surface energy of the
equilibrium shape crystal increases asReq increases. The results of
this calculation are shown in Fig. 8(a). In the second calculation,
the values ofboth g1 and g2 are adjusted to accommodate the
change inReq, but in a way that maintains theaveragesurface
energy of the equilibrium shape crystal constant at 1 J/m2. The
results of this calculation are presented in Fig. 8(b). In both figures,
the curves terminate whenRa reaches 1.01Req.

When the effect of varyingReq is assessed, one concludes that
the details of the anisotropy have only a minor influence on the
time required to reach the near-equilibrium shape. When the
average value of the surface energy is allowed to vary, Fig. 8(a),
a factor of 4 change inReqresults in only a factor'2 change in the
time at whichRa reaches 1.01Req. When Ra $ 3, the predicted
times to reach a givenRa value vary by less than or equal to a
factor of'1.5. When the average value ofg is held constant, the
times at whichRa reaches 1.01Req differ by only a few percent. In
this case, whenRa $ 3, the times required to achieve the associated
shapes differ more substantially, varying by a factor of up to'3.
Nonetheless, the results imply that if measured values ofRa are
interpreted using a model that assumes the surface energies of all
facets are equal, this assumption would introduce less than a 23
error into the inferred value ofDs. Since measurements of relative

surface energies in metallic systems,49–52 and recent measure-
ments of relative surface energies in undoped34,40,45and doped
aluminas41,42,45 suggest that actual variations ing are much
smaller than considered in the calculation, such variations are not
likely to be a major source of error in estimates of diffusivities. In
contrast, unrecognized changes in the rate-limiting transport pro-
cess from diffusion to SALK, and assessment of morphology
changes that involve growth or decay of perturbations on a stable
facet, can lead to significant errors in estimates of the surface
diffusivity.

V. Summary and Conclusions

Models have been developed that allow calculations of the
times required to adjust the shape of facetted rodlike particles and
facetted pore channels by surface diffusion. The modeling has used
differential geometry and weighted mean curvature based descrip-
tions of the driving force. Two different methods of describing the
potential gradients driving the surface flux have been presented
and compared. The method based on a continuously varying
potential is more rigorous, but unfortunately also more difficult to
apply to 3-D problems. It was thus of interest to determine the
magnitude of the errors that arise when simpler approximations of
the driving force, approximations that are more easily applied to
3-D problems, are used in modeling the behavior.

The results suggest that the crystal/cavity size and the temper-
ature, through its influence on the surface diffusivity, are the key
factors influencing the rate of pore shape evolution. The initial
shapes considered in the modeling deviate significantly from the
Wulff shape. Under these conditions, although the details of the
feature shape, the formulation of the chemical potential gradient,
and variations in the details of the surface energy anisotropy do
influence the evolution times, the changes owing to these factors
tend to be small, of the order of a factor of 3 or less. As a result,

Fig. 8. Predicted effect of surface energy anisotropy on the shape equilibration kinetics of a stretched square. In (a)g1 is held fixed at 1 J/m2, and changes
in Req are accommodated by changes in the value ofg2. In (b), the values ofbothg1 andg2 are adjusted to accommodate the change inReq, but theaverage
surface energy of the equilibrium shape crystal is maintained constant at 1 J/m2.
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the general features of the evolution are not affected significantly
by the subtleties of the initial shape, approximate treatments of the
potential gradient, or the ultimate Wulff shape.

Significant simplifications have been made in the modeling.
The surface diffusivity is assumed to be isotropic; differing
diffusivities on adjoining facets introduce a discontinuity in the
potential gradient at the facet edge.44 The analysis does not address
the nucleation of new facets, merely the displacement of those
originally present. Perhaps most importantly it implicitly assumes
that shape relaxation in fully facetted systems can be surface
diffusion limited and, thus, that a sufficiently high ledge density
exists. A reassessment of the experimental results of Choiet al.34

suggests this may not be valid. The role of the atomistic structure
of the surfaces undergoing displacements and the role of ledges in
crystal growth was first discussed in the work of Burton, Cabrera,
and Frank53 and similar issues relevant to shape equilibration
constitute the focal point of analyses by Ozdemir and Zangwill,54

Bullard and Searcy,55 and Mullins and Rohrer.48

The most compelling assessment of the importance of surface
structure on the evolution of a facetted crystal or pore would be
obtained by comparing experimental observations with modeling
results. The close agreement between the linearized gradient and
parabolic potential based models has encouraged efforts to extend
the former approach to the 3-D geometries that can be generated
using microfabrication methods. Isolated features with simple
nonequilibrium shapes offer several important experimental ad-
vantages over the 2-D feature geometries treated in this paper,
notably the absence of complications due to Rayleigh instabilities.
The extension of the linearized-gradient approach to shape evolu-
tion of isolated nonequilibrium shape pores, and the results of a
parallel experimental study are presented in a companion paper.39

It will be demonstrated that a wide range of evolution behavior is
encountered for cavities of identical volume and initial aspect ratio
but differing crystallographic orientation. The results suggest that
in many of these cases, consideration of surface attachment limited
kinetics, and ledge availability is essential.
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