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The rate at which fully facetted nonequilibrium shaped parti-
cles and pores approach their equilibrium (Wulff) shape via
surface diffusion was modeled, and calculations relevant to
alumina were performed to guide experimental studies. The
modeling focuses on 2-D features, and considers initial parti-
cle/pore shape, size, surface energy anisotropy, and tempera-
ture (surface diffusivity) as variables. The chemical potential
differences driving the shape change are expressed in terms of
facet-to-facet differences in weighted mean curvature. Two
approaches to modeling the surface flux are taken. One
linearizes the difference in the mean chemical potential of
adjacent facets, and assumes the flux is proportional to this
difference. The other approach treats the surface chemical
potential as a continuous function of position, and relates the
displacement rate of the surface to the divergence of the
surface flux. When consistent values for the relevant materials
parameters are used, the predictions of these two modeling
approaches agree to within a factor of 1.5. As expected, the
most important parameters affecting the evolution times are
the cross-sectional area (volume in 3-D) and the temperature
through its effect on the surface diffusivity. Pores of microme-
ter size are predicted to reach near-equilibrium shapes in
reasonable times at temperatures as low as 1600°C. The
detailed geometry of the initial nonequilibrium shape and the
Wulff shape appear to have relatively minor effects on the
times required to reach a near-equilibrium shape.

I. Introduction

THE shape changes undergone by solid particles, and by precip-
itates and cavities (pores) within solids, constitute an important
element of microstructural evolution in materials. Such morpho-
logical changes are evident during sintering and, more generally,
occur whenever materials are held at elevated temperatures fo
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prolonged periods. The mass flows responsible for these shape
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changes can occur predominantly through the vapor phase, throu
the bulk, along a solid—vapor interface (a surface) or along ¢
solid—solid interface (a grain boundary). The rate of shape chanc
can be limited by the rate of mass arrival via gas, bulk, surface, o
grain boundary diffusion. Alternatively, the shape change rate ca
be limited by the rate at which mass can be incorporated at a ma
sink or can be released or supplied by a mass source. The gene
term surface-attachment-limited kinetics (SALK) is used in this
paper to refer to such situations, in which the rate of a nucleatiol
step or of an attachment/detachment step limits the shape chan
rate.

Models treating a variety of diffusion-rate-limited shape
changes in idealized materials with isotropic surface energies wei
developed during the 1950s and 1960s. These included treatmel
of surface (scratch) smoothiftggrain boundary grooving parti-
cle sintering>> and Rayleigh instabilities of solid rods and
cylindrical cavities in solid$. These models served two important
roles. In cases where the relevant transport data were available, t
models could be used in a predictive manner. In cases whel
transport data were absent, the experimental results could f
evaluated using these models to provide needed transport da
Most of the surface diffusion data available for ceramic system:
have been inferred from rates of morphological change assumed
be controlled by surface diffusion.

Subsequent treatments of the aforementioned processes he
focused on extending their range of applicability, and examininc
the behavior of less idealized systems. Accordingly, some effort
have focused on evaluating the effects of higher-order (nonlinea
terms on the predictions of the models and improving the accurac
of predictions for more advanced stages of these processes (e.
Refs. 7 and 8). Others have focused on the effects of more comple
initial or other boundary conditions on the predicted behavior (e.qg.
Refs. 9 and 10). In general, these analyses have retained tl
assumption of isotropic surface energy.

Other modeling efforts have focused on incorporating the
effects of surface energy anisotropy on morphological evolution
For a particle or cavity of fixed volume held at constant temper-
ature, the driving force for shape changes is the associate
reduction in the total surface energy. In many crystalline solids, th
lowest energy form of a particle or cavity includes facets, and the
equilibrium or Wulff shape can be fully facetted. The Wulff
theorem prescribes that the equilibrium shape of such a particle ¢
cavity is that for which

Yi_ V2

Yo . % = constant
i

= = )

PR P

wherel; is the physical distance from the center of mass of the
crystal to thath facet measured along a normal to ithefacet, and

v; is the energy per unit area of thith facet'* Surface energy
anisotropy will alter the final state of a system and influence the
driving forces and kinetics of the processes that transform it fron
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an initial nonequilibrium staté®** The appearance of facets can Il. Background
also lead to a change in the rate-controlling mechanism. ) o
The influence of surface energy anisotropy and facetting on the ~ Modeling the kinetics of shape change for fully facetted
energetics and kinetics of shape changes has become the topic oparticles and cavities by surface_ diffusion nj\{olves several critica
increasing attention. Bonzel, Mullins, and their collaborators have Steps. These include formulating the driving force for shape
examined the effect of surface energy anisotropy on scratch changes, developing an equation to describe the surface flu
smoothing behavior and have developed elegant new experimentaf€lating this flux to a change in particle shape, and solving the
methods and refined theoretical mod¥s®Taylor, Cahn, Carter, resulting dlfferentlal equation that specifies th_e rate of_shap(
and colleagué8—22 have addressed a broad range of problems change.. In this section, we focus on presenting two differen
involving shape changes in facetted crystals, and have providedformulations of the driving force for the shape change. One
theoretical descriptions of shape changes controlled by both @ssesses the net change of surface energy per mole of me
surface diffusion and by SALK. trlansferr.ed from a receding face_t to an adyancmg chet;. thi:
Within the past decade, methods that allow the introduction of differential geometry approach defines a chemical potential differ
large numbers of cavities of controlled size and shape into €Nc€. The second approach assesses the free energy cha
single-crystal substrates of controlled surface orientation and their 2SSociated with surface formation per unit volume swept as a fact
subsequent conversion to intragranular defects have been devel@dvances. This is the weighted mean curvéftmed allows one to
oped. These methods have been used to examine the high_deflne the chemical potential on a facet-by-facet basis.
temperature properties of surfaces and interfaces in cer&mics.
Since it is possible to generate defects with shapes that differ (1) Feature Geometry
substantially from the equilibrium shape, arrays of such defects The discussion will focus on fully facetteN-sided rodlike
can be used as a vehicle for systematic investigation of the kineticsparticles or pore channels in a solid. The geometry of interes
of shape evolution. Moreover, micrometer-sized pores can easily consists of alN-gon lying in thex-y plane that extends indefinitely
be produced by microlithographic methods, and it is expected that in the z-direction, as illustrated in Fig. 1. Vectors lying in they
pores of this size (or smaller) are necessary to reduce theplane extend from an origin 0, fd points,Q;, Q,, Qs, . . ., Q.
equilibration time to reasonable levéls:2®Thus,if pores of such TheseN vectors have lengths, I, I, .. ., 1y, . . ., Iy. Normals to
experimentally accessible sizes approach their equilibrium shapethese vectors passing through the poi@ts Q,, Qs, ..., Qy
in reasonable times, then the Wulff shape (of a large number of define the facet planes. The edge lengths ofNhgon (the facet
cavities under prescribed conditions) can be determined. widths), denotede,, e,, €5, ..., €, ..., & depend upon the
For such small intragranular cavities, surface diffusion is orientations and lengths of the vectors, and are limited by
expected to be the dominant diffusional process in alumina. Two intersections with other adjoining facets. The facets form a conve
treatments of the surface-diffusion-controlled shape evolution rate body enclosing a cross-sectional aka. The volume per unit
of fully facetted rodlike pores have recently been preseftéd. depthV’ is Agl.
For this 2-D case, at fixed temperature, the predicted times to
equilibrate pores of fixed cross-sectional area and common initial (2) Relationships for an Equilibrium-Shape Crystal

shape in alumlna. differed .by a factor 6”03'. Errors in both The procedure for determining the equilibrium shape of a 3-C
models caused this large disparityCompounding this, different 2 cetted crystal can be found in standard reference texts (e.g., R
geometric parameters were used to track the evolution of the 43) |t inyoives minimizing the Helmholtz free energy of a body of
system, and thus a direct comparison of the predictions was ¢onstant volume and numbers of moles at constant temperatur

cumbersome. Since only shape changes are allowed, the problem entails mir

This paper reevaluates the two approaches to modeling surface-mizing ® = 3N ,yA at constant volume wher is the area of
diffusion-controlled pore shape evolution and isolates the effects facetj, and cajn_t)é solved using the method of Lagrange multipli-

of different modeling assumptions on the predicted evolution rates. g For the fully facetted 2-D crystals/cavities of interest hete,
A key finding is that when consistent values for the relevant

materials parameters are used, these two modeling approaches
yield predictions that agree to within a factor of 1.5. This close
agreement has several important implications. The 2-D result
suggests that if surface diffusion limits the evolution rate, it should
be possible (with patience) to reach near-equilibrium shapes for
micrometer-size pores that can readily be fabricated using micro-
lithographic methods. It also suggests that the approximate method
described in Refs. 37 and 38 can be extended from the 2-D cases,
which can easily be treated using the exact met{dd,the more
experimentally relevant 3-D cases where the exact method is
extremely difficult to apply. This is the subject of a companion
paper:® in which the predictions of the 3-D model are compared
to the results of model experiments assessing pore shape equili-
bration rates, and the role of ledge-producing defects (dislocations)
on evolution rates are discussed. Collectively the results of these
two studies proved useful in guiding the design of experiments
aimed at determining the Wulff shape of doped and undoped
aluminas. The results of the Wulff shape studies will be reported
separately® 42

"The driving force formulation in Ref. 37 was incorrect. Even when this was
correctect® and the same values of materials parameters were used, the disparity
remained large. It was subsequently found that the predicted times in Fig. 8 of Ref.
34 are inconsistent with the stated value of the surface diffusivity; this numerical error
significantly impacts the interpretation of the experimental results presented in Ref.
34. There is also an error in Eq. (5) of Ref. 34. Details are provided in the Results _. . . . . ‘
section of this paper. A short note further detailing and correcting these errors is in Fi9. 1. Parameters in a geometric description of a facetted solid rod or :
preparation. facetted pore channel.
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is held constant, and a similar minimization procedure leads to a

set of N equations of the form

N

>

i=1

a—lv(yj—nlj)zo (forv=1,2,...,N) )

whereA is the area of facgtper unit depth, and is a Lagrange
multiplier. One possible solution is

n_ X W @3)
PR P Iy
which is the 2-D analogue of Eq. (1).

The procedures for defining the chemical potential of a crystal

having the Wulff shape are also available in standard texts (e.g.,

Ref. 43). For a facetted crystal having the Wulff shape, the
chemical potential exceeds that of an infinite size crystal by an
amount that is proportional tg,/l;

v'Yz

Wi, = Mot o=

2

\_/VN
= Mot . 4
N

where ., is the bulk chemical potential, and is the molar
volume. Thus, for a particle with the Wulff shape, the ratjd,
plays the same role ag in an isotropic system, whete is the

curvature.

(3) Relationships for a Non-Equilibrium-Shape Crystal
Equation (4) is validonly for a crystal having the equilibrium

The Wulff Shape of Alumina
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The chemical potential associated with fagetepends on the
wmec of the facet, and is given by
B = po + V(wmo), (8)
The wmc reduces to a form involving/l; when a crystal or cavity
has the equilibrium shape.

(4) Driving Force for Shape Changes

In general, there are two approaches to formulating the driving
force for shape changes. The first computes the free energy chan
associated with the transfer of mass from one facet to the othe
determines the free energy change per mole of mass transferre
and thus defines a chemical potential differentg, The second
approach employs the concept of weighted mean curvature 1
specify the chemical potential on each facet, qug.and p,, and
evaluates the difference in these chemical potentigls;: ., to
define a driving force. In this section we apply both of these
methods to the case of a stretched square and a stretched hexag
The resulting driving force expressions are used in the modeling t
calculate the shape change rates for these two geometries.

(A) Stretched Square For the rectangular cross section illus-
trated in Fig. 2(a), the condition of constant volume per unit deptt
implies A, = 4,1, = constant. LettingD represent the surface
energy per unit depth of crystal in tteedirection, shape changes
that conserve volume and involve normal displacements of th
facets produce a differential surface energy change per unit dep
of crystal given by

(dD) o = (4'1)[71 d, + vy, dl 1]

I
= (4'1)['\(2 Y1 E] dl, 9

shape: for the Wulff shape the chemical potential is the same on all This éxpression equals zero when the Wulff condition, Eq. (3), is

facets™ A more general formulation of the chemical potential

satisfied. Whenl, exceeds the equilibrium value, the term in

beneath a facetted surface, applicable to non-equilibrium-shapePrackets is negative, andbdis negative whenld is positive.

crystals and cavities, was presented by Hertfighe effect of an
infinitesimal displacement of a plane surface parallel to itself is

The transfer of d moles from a single surface of arég per
unit depth and energy, to a single surface of are&, per unit

considered, and leads to a definition of an area-average potential.depth and energy, produces a differential surface energy change

The further extension of this concept has led to the weighted mean
curvature as a means of defining the chemical potential of each

facet. We will define the weighted mean curvature (wmc) to be the
limit of the rate of change of surface energy with respect to the
volume swept as the volume swept goes to Z&Bollowing the
discussion of Tayld® with the current sign convention, for a
segment§ of a polygonal surface, the wmc is given by

B 1
wmg(s) = 7Iengtf($) E 3 fj %)

where §; is +1 for a convex (positive) crystal, ang1 for a
concave (negative) crystal. The tefpis

Yi — GiYi
fo="__3°7 6
[ \/l _ Cﬁ (6)
where
cj = niny = [y |Ay|-cos® (7)

andn; andiy; are the unit normals to surfaceandj, and# is the
angle between them.

*f Eq. (4) is used to specify the chemical potential of mass on a facet of a
nonequilibriumshape particle, the facet-to-facet chemical potential differences that
are implied would lead to pathological flows; i.e., such definitions of the potential
make the Wulff shape an unstable equilibrium state, and are not pertinent for
nonequilibrium cases.

S5Taylor? originally defined the weighted mean curvature, wmc, as the negative
of this quantity. In subsequent papers by Cahn and T&yléfand in this paper, the
sign convention is reversed to parallel the sign convention normally used for

I
(dP),, = (2~1>[v2 - r] d, (10)
The volume per unit depth swept due to the displacement of face
1 by an amountld, dV,, can be related to the number of moles
transferred, 0, and the molar volumeéy, as follows

V dn

dv, = 2l;1dl; = Vdn > dll:ﬂ
2

(11)
Inserting this into Eq. (10) and rearranging, the differential energy
change is

(d®),_,, = \7<’|y*22 - %) dn (12)
The ratio of the free energy change and number of mole:
transferred is a chemical potential difference, and thus, we obtai

do
dn s =Apony = By — P

(13)

For the stretched square geometry, one can infer that the ter
involving Vv,/l, is associated withvr, and the term involving
Vy,/l, is associated witf.,. When the geometry is more complex,
it is not always obvious which of thg /I, terms is associated with
which facet. OnlyAp,_,, is clearly specified.

A treatment of the driving force in terms of weighted mean
curvature explicitly defines the (mean) chemical potential of eacl
facet. For the simple geometries under discussion here, the wn
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Fig. 2. lllustration of the two geometries considered, and parameters used in the modeling. The geometry in (a) is referred to in the text as a stretchec
while that in (b) is termed a stretched hexagon.

values can easily be assessed by examining the surface energyays
change per unit volume swept graphically. Figures 3(a) and (b)

show the surface area changes as a result of displacesigatsd Acs= 2118, + 118, = |16 + 218, = 4e,l, — el (16)
8l,. Assessing the surface energy changes and volume swept, it
follows that the wmc of facets 1 and 2, wmand wme, where
respectively, are >
e =—"7=02,-1y (172)
e = 20D v, (140 V3
NEE P )
&= (17b)
2v,(8l1 vV
_ va( 2):E (14b)
(2'1'1)'6|2 Il

The constantA . constraint leads to the following relationship
between 8, and d.:
Applying Eg. (8), the chemical potentials on facets 1 and,2and

Ko, respectively, are d, = — 2|2 Ll (18)
2 1
B = Y2
1= otV 1, (152) The surface energy per unit depth of crysth],can be written
N
Mo = o+ \7(%) (15b) ¢ = 2 Vil = ¥12A; + vAR,
i=1
(B) Stretched Hexagon The geometry of the stretched hexa- = 2v,errl + 4y.erl (29)

gon (Fig. 4) is slightly more complex than that of the stretched

square, and this has led to differences in the description of the If we assume that the shape changes involve normal displacemer
geometry, and in the choice of metric used to characterize the of facets and maintain symmetry, the differential surface energ
approach to equilibrium. For examplk,, can be defined in three  change of unit depth of crystal in response to a shape change

1%
unit depth a |||||||||
i iV

Fig. 3. lllustration of the surface area and surface energy changes associated with the morphological evolution of a stretched square. When thes
energy changes are divided by the volume swept, the wmc of the displaced facets is determined.
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Fig. 4.
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—» Oey am

unit depth

(a) lllustration of the surface area and surface energy changes associated with the morphological evolution of a stretched hexagon. When the

energy changes caused by the displacement of facet 1 are added and then divided by the volume swept, the wmc of facet 1 is determined. (b) IlI
of the surface area and surface energy changes associated with the morphological evolution of a stretched hexagon. The wmc of facet 2 is determi

va/l4.

constantv’ will be given by

41, 2
(dq))totalz 2"Yl 7$Ed|1 +4"Yz ﬁdll 1

8

NG (20)

P
{Vz - Yl|:| dl-1
1
Wheny,/l, = v,/l,, d® equals zero as it should. Whénexceeds
the equilibrium value, the term in brackets is negative, adhdgl
negative whenld is positive.

The differential change in surface energy when one transfers d
moles from the two identical flanking surfaces of afgaper unit
depth and energy, to a single surface of are®, per unit depth
and energyy, is

(dd) —[1- (*iljdl>+2- (idlﬂ-l
21 Y1 \/§|1 1 Y2 \/§ 1

4 P

= V@['}’2 VY1 E (21)

] dl,-1

The volume per unit depth swept due to the displacement of facetan amount (

1 by an amount ig, dV,, can again be related to the number of
moles transferred,rd and the molar volumey. For this geometry

V dn

avi=erld, =Vdn>d,= -
1

(22)
As a result,

do
dn s =Apog = B~ o

P v _(1y2 = Ioye
”ﬂ)ﬁ'l B 2\’(11(212 =N

(23)

e

The numerator goes to zero wher/l, = v,/l,. The chemical
potential difference goes to infinity wher,2= |,; geometrically,

when this condition is satisfied, the length of facei}, goes to
zero, as shown by Eq. (17).

The same result can be obtained by evaluating the difference |
wmc of facets 1 and 2. Figures 4(a) and (b) illustrate the surfac
area and surface energy changes as a result of displaceéhgnts
andadl,, respectively. For facet 1, the surface area per unit depth i
e,;'1, and the volume swept by a displaceméhjtis e,;-1-8l,. The
displacement of facet 1 b§l, increases the area of each of the
inclined facets of energy, by an amount (2¢/3) él,-1, resulting
in a surface energy change, ¥48)y, 8l,-1. In addition, the
displacement decreases the length of facet 1, by an amou
(1/V/3) 8l,-1 at each end, resulting in a surface energy decrease
(21V/3)y, 8l,-1. It follows that wmg is

4 2 2
wmg, = (— vl l ——= 'ylé‘>ll-l)/\/§ (21, = 1311

e N
2Y,— V1
=, -, (24)

At equilibrium, this ratio is equivalent te,/I,. The displacement
of each inclined facet by an amouit, extends facet 1 by
2%/3) 8l,-1, and thus the energy increase is
(2hV/3)y; 8l,1. The volume swept ise,1:8l,, and thus,

2 2
wmc, = (76|2'1>y1/<7|1'1)6|2
_m
= |1

(25)

which is equal toy,/l, at equilibrium. The driving force for
transfer of mass from facet 2 to facet 1 is

Apog = W1 — M2

(=) - ()]

_/1 —
_ 2V< 1Y2 271)

L2l — 1) (26)



2566

For both the stretched square and the stretched hexagon, the

chemical potential on a facetis affected by the energy of the
adjacent facetsy,. The pairing ofyw; with the ratioy,/l; obscures
this and results in relationships valid only when the crystal or
cavity has the equilibrium shape.

Ill.  Modeling

When a facetted crystal or a facetted cavity has the equilibrium
shape, the wmc and the chemical potential will be constant, and

there is no driving force for mass transfer and shape changes. In

Journal of the American Ceramic Society—Kitayama et al.

Vol. 83, No. 10
(va/1) — (v2l15) _ E
(I, + 1y 3

+ o + \7(%)
1

The same general method can be applied to the stretched hexag
However, in that case, the potential on facet 2 is asymmetric abot
the midpoint; the gradient of the surface potential equals zero &
the junction point of the two inclined facets located a distapce

from the origin. These equations can then be used in conjunctio

6

3
(2) —
ws () ZV[

(30b)

contrast, when the shape deviates from the Wulff shape, the wmcWith Eq. (28) to prescribe an exact value for the displacement rat

and the chemical potential will vary from facet to facet on the
particle or pore surface. This spatial variation in the chemical
potential creates a driving force for mass transfer that allows the
system to approach the equilibrium shape, albeit asymptotically.

For mass transport controlled by surface diffusion, the surface
flux, Js, can be related to the gradient in the chemical potential at
the surface. Fick’s first law of diffusion for the surface flux (in
atoms/(n¥-s)) can be written as

B D dw
° VKT dx

(27)

where D, is the surface diffusion coefficienty is the molar
volume,k is Boltzmann'’s constant, anllis absolute temperature.
The local rate of mass accumulation, and thus the surface displace
ment rate, hinge on the gradient in the flux. The normal velocity of
a surfaceyV,, can thus be expressed as

dx?
whered, is the width over which diffusion is enhanced, afds

the atomic volume.
If the chemical potential on the facet of a nonequilibrium shape

8D
kT

(28)

of the facets.

This approach is relatively simple to apply to 2-D problems, but
satisfying the boundary conditions becomes very difficult when
the diffusion problem is three-dimensional. Thus, a simpler ap
proach to estimating the rate of facet displacement, one that |
more easily applied to 3-D problems, was pursued.

Regardless of the form of the chemical potential gradient on :
facet, the total mass arrival rate for a facet is the sum of the mas
flow rates at the facet edges. These flow rates are dictated by tt
potential gradients at the facet edges. If we implicitly assume tha
the deposition rate is uniform on the facet, the problem reduces t
one of estimating the gradients at the facet edges. Kita§ahas
approximated the gradient at the facet edge as the difference in tl
mean potentials on the adjoining facets divided by an “effective
diffusion distance.” As a result, Eq. (27) is applied to the edge, an

‘modified to be

_ Ds Aﬁz—u
\_/kT AXZ%I

(J9)om1 = (31)

where Ap,_, = p; — R, represents the difference in mean
potential, and\x,_,, is the effective diffusion distance. The mean
chemical potentialsy.; and p,, are calculated using Eq. (8). For

the stretched square, the potential will be either a minimum o

crystal were assumed constant on the entire facet, then chemicamaximum at the facet centers, and either a maximum or minimun
potential 4discontinuities would exist at facet edges. Yu and atthe facet edges, depending upon whether the facet acts as am
Hackney* formulated the positional dependence of the surface sink or a mass source. If the center-to-edge variation of potentic
potential on a facet in a nonequilibrium shape crystal, using an with position is linearized, and Eq. (8) is used to define the meat
approach suggested by HerrityWhen facets undergo uniform  potential, then the potential is at its mean value for facets 1 and
normal displacements the rate of mass deposition or removal mustat distances)l, and ¢2)l, from the corner, respectively. The
be uniform on each facet. The gradient or divergence of the flux sym of these distances is used to scale the potential difference, a
must be constant on each facet, and it follows from Eq. (28) that js referred to as an effective diffusion distance. (For the stretche
VZu must be constant on each facet. Yu and Hackhegated the hexagonAx, ., is (e,/4) + (e,/2).)

case of a stretched square evolving by surface diffusion. General-  The two approaches are compared in Fig. 5 for a stretche
ized procedures were developed independently by Catter, square. The parabolic potentials are drawn, and compared with tt
and presented in Refs. 22 and 34. If the position on facets 1 and 2facet-edge gradient that results wheix, ., is set equal to

in the direction of flow is measured by the variablesandy, 4, 1|} Note that the slopes are similar, and that the quality of
respectively, then for the 2-D problems of interest, a possible agreement hinges on the choice &f,__,. For the given
general solution to the chemical potential variation across facets 1choice, the parabolic potential leads to a pT)tentiaI gradient at th

and 2 takes the form facet edge that is 136 that for the “linearized” gradient. As a
result, the times predicted by the linearized gradient method for

D(y) = o x2

is"(X) = CX° + CX + G (29a) given change of shape will be Xx&the value obtained by the more
@ 5 exact method. Similar comparisons for the case of a stretche

ps (y) = diy + dyy + dg (29D) hexagon, with the effective diffusion distance taken tody&j +

(e,/2), lead to a factor of 1.5 difference in the edge fluxes, with the
wherec,, C,, andc; andd,, d,, andd, are constants whose values  continuous potential again yielding the higher evolution rate.
are chosen to match the boundary conditions. ateragevalue of The calculations of the displacement rates for facet 1 for bott
the chemical potential on facets equated to that dictated by the  the stretched square and the stretched hexagon involve the folloy
wmc of the facet, Eq. (8). The potential and the potential gradient ing steps. The infinitesimal volume change of a single facet of type

must be continuous at the facet edge. Symmetry considerationsi, dv,, during an infinitesimal time intervaltds expressed as
provide additional boundary conditions.

For the stretched square, taking= 0 andy = 0 as the
midpoints of facets 1 and 2, respectively,

) + wo + \7(&>
I

[(vllll) - ("/2”2)]( )
S A2
(30a)

dVl = Aldll = JS'SS'L'Q'dt (32)
whereA, is the area per unit depth of facetd, is taken here to
be equal ta)*3, andL is the total common or shared edge length
between the interacting facets. The prodidt represents the area
through which diffusion is occurring. This equation can be

_3\7
T2

2
I3

r(x) 3

(I, + 1y)
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rearranged and combined with Eq. (31) to yield the following
differential equation for the displacement rate of facet 1

d;  JodsL-Q

da A
DO L Aoy
VKT Ar Aoy

(33)

For the stretched square, wiffju,_., given by Eq. (13)AX,_.;
set equal to/z(l, + 1,), andl, set equal toA.44!,, the potential
gradient can be written as

I, +1,
8V/ v,412 — yi-Ass
_ 7("/2 ; Y1 ) (34)
A\ 4T+ A
The potential gradient at the cornet € |, andy = —I,) implied

by Eq. (30) is 1.X this value. For unit depth of the stretched
square, takind\; = 21,-1,L = 2, and using Eq. (34), Eq. (33) takes
the form

( d 1) B
dt StrSq

Letting R.q = v2/v1, this equation can be re-expressed as
(dl 1) 3 32D 0%y, 1 11(Regdl — Ac)
dt Strsq

kT AL 42+ A
Solving for d and integrating leads to

BZDQAB 1 72'4@ - Vl'llAcs
KT AL 42+ A

(35)

(36)

kT Ags I(ll)
(t—t)swsq= | 5o || 25| 755
=\ D"y, | 32"\ 1@

_ Ags(l + Req) | Acs - 4(|(11))zReq (37)
64R.q  \Ai— 4(I9)7R,

wherel{?) is the value of, at timet, and|{’ is the value of, at
time t. SinceA. is homogeneous of degree 2, a uniform enlarge
ment of the particle by a factar increase#\. by a factor\?, and
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thus, the evolution timescales with\* as would be expected from
the Herring scaling law4®

For the case of the stretched hexagap,._., is given by Eq.
(26), and the effective diffusion distance &/é) + (e,/2). Using
Eq. (17), the potential gradient can be written as

<ﬁ> _2\3v (2y2—yl_£>
AX) e @l HID\ 2,1, 1

If we solve Eq. (29) for the stretched hexagon, and evaluate th
potential gradient at the corner, we again find that it isxLthat
obtained with a linearized potential. For a segment of crystal o
unit depth, takingA, = e;-1, L = 2, using Eq. (17) to re-express
e,;, and Eq. (16) to eliminaté,, Eq. (33) takes the form

( dl1> _ 96D 1[214(4y, — v1) — \@Acsvl])
dt StrHex

KT\ ((3Ac + BID(3Ac — 21?2
(39)

With R., = v./v, the integrated form of this expression can be

written as

(38)

( kT ) A(5Req — 2)
D*y1/| 83(4Req— 1)?

(D =AY AL (1P
~saaRr,- 1 T2

(197 = (119)?)

32(4Ry— 1)

\/§Acs + 2('?].0)2 - 8(|$))2Req

\/§Ac5 + 2(|(1[D))2 - 8(|(110))2Re
(40)

- AL2Req— 1)*(2Req+ 1)
8(4Req— 1)° :

The predicted times are a factor of 1.5 greater than those predicte
for the parabolic potential.

IV. Results

In this section we provide the results of three sets of calculation
performed using values of materials parameters specific to alum
num oxide. These calculations examine the effect of (1) crystal o
cavity size and shape, (2) temperature, and (3) the surface ener
anisotropy on shape relaxation kinetics.

(1) Effect of Crystal (Cavity) Volume and Shape on
Relaxation Rates

The results of the modeling for both the stretched square an
stretched hexagon geometry were used to calculate aspect rati
time trajectories appropriate to alumina. For this purpose, th
temperature was fixed at 1600°C, and an “average” value of th
surface diffusivity DJ) of 1.82 X 10 ** m%s was assumed. The
relevant volume) was taken to be 2.1X 10 2° m3*” and the
surface thickness, was assumed to be of the order@#> The
surface energies;, andvy,, were assumed to be equal and 12)/m
The initial value ofR, (= w/d) was taken to be 15. Figure@ots
the times required to reduce the aspect r&iofrom 15 to the
indicated values oR, for both a stretched hexagon and a stretchec
square of fixed cross-sectional arefy, = 10~ ** m? Aspect
ratio—time trajectories for both the linearized and parabolic poten
tials are shown. The curves terminate when the vallR, oéaches
1.01 times its equilibrium valuB,, The anneal time required for
intermediate changes iR, e.g., from 10 to 5, is determined by
assessing the difference in anneal time corresponding to the:
values ofR,.

Since the time to reach a given value Rf from a common
initial value is proportional toAZ, the results predict that at
1600°C, features with a cross-sectional area of the order of
wm X 1 pm should reach values &, of 1.01R.,in 8 h orless.
Using the values foD, (10~ *° m?/s) andQ) (6.6 X 10 2° m®)
assumed by Chaét al,>* the predicted relaxation times would be
reduced by a factor=25. Submicrometer-sized features are not



2568 Journal of the American Ceramic Society—Kitayama et al. Vol. 83, No. 10

wWp T T ey W0 T Ty
[ —o— StrSq(lp) i
—=— StrSq(pp) ’
—<— StrHex(lp) 10° :
—— StrHex(pp) f
o -11_2 I
10° Ay =10""m" 7 o -
T =1600°C
Y1=Y2=1]/m"
o> 1 ~ 10*F
E 3
T 10° 7 o
= = 1000 |
100 F
10 4 '
10 F
1 ! » L L L 1 ' L L L | N ., ., ., 1 L L . L L 1 L L L L 1
1000, 5 10 15 20 0 5 10 15 20
Aspect Ratio, R, Aspect Ratio, R

Fig. 6. Comparison of the predicted time dependencies of the aspect ratio Fig- 7. Plot of the predicted effect of temperature on the shape equili-
at 1600°C for stretched squares and stretched hexagons of fixed size.  bration kinetics of a stretched hexagon.

necessary to achieve near-equilibrium shapes at this temperatureparabolic potential yield results that differ by only a factor of 1.5.
Similar size scaling of the results in Fig. 6 indicates that pores of Thjs close agreement suggests that the linearized approach can
the size examined by Chet al®* (A, = 10" **m?) should reach  ysed to provide reasonable estimates in 3-D problems whet
near-equilibrium shapes within only a few minutes at 1600°C if solutions that are based on a continuously varying potential on th
surface diffusion were rate-limiting. The relaxation kinetics sug- surface are more difficult to obtain.

gested by Fig. 8 in Ref. 34 imply that50 h anneals would be

required for shape equilibration of cavities with, = 1073 m?; (2) Effect of Temperature
this result is clearly inconsistent with the stated values of materials The time t h ticular stat t d deul
parameterd? e time to reach a particular state, or to produce a particula

shape change, scales inversely with the diffusion coefficient. I
(ﬁssessing the surface diffusion data available for alumina, there
considerable scatter both in the magnitude of the diffusivity a
{ixed temperature and in the apparent activation enéfgfor the

the w/d ratio and the cross-sectional area, which define the shape PréSent purposes, an average value for the surface diffusivity |
and volume, are the key variables, and an approximate shape Caﬁ':lssumed, and the temperature dependence of the average surf

be used to provide reasonable estimates of the evolution rate. Atdiffusivity is calculated using

A comparison of the evolution kinetics of the stretched square
and the stretched hexagon suggest that the relaxation rates are n
particularly sensitive to the details of the crystal or cavity shape.

least in systems like alumina, where the uncertainty in the D, = D, exp~¥RD = 2360exy 506000RT (m¥s)  (41)
diffusivity is quite large, the details of the facet structure are not
critical for kinetic modeling. with the activation energ@, given in J/(degnol).

It is also the case that the details of the potential gradient have  To illustrate the effect of temperature, the results for the two
only a minor effect on the predicted evolution rates. The displace- treatments of the stretched hexagon are compared in Fig. 7. A
ment rate of a facet hinges on the volume arrival rate, and this is initial R, value of 15 is assumed, ar{. is set equal to 10** m?.
dictated by the potential gradient at the facet edge. For reasonableThree temperatures are considered: 1600°, 1800°, and 2000°
choices of the effective diffusion distance, the potential gradient The predictions indicate that although a particle or pore of order
predicted using the difference in the mean potentials is close to thatfew micrometers in size would not equilibrate in an experimentally
obtained when a parabolic potential is assumed. For both the accessible time at 1600°C, such a feature is expected to Reaeh
stretched square and stretched hexagon, the linearized gradient and.01R,, in approximately 1 day at 1800°C. At the higher temper

atures, an even broader size range of features becomes accessi
and it may be possible to examine scaling law behavior directly.

TThe numerical error reflected in Fig. 8 also impacts the interpretation of the
experimental observations in Ref. 34. The persistence of nonequilibrium shapes in
such small facetted cavities suggests that in the absence of ledge-producing defects
such as dislocations, the evolution rates are extremely sluggish, and not controlled by

surface diffusion. Experimental results presented in the companion Bagiep n the scratch smoothing study of Bennison and Harfiem error was made
support this viewpoint. Recent calculations by Mullins and Rd¥renggest that the in converting previously reported values Df to the3.D format and units of r¥s.

barrier to the nucleation of new facet layers is extremely large for facets above a Prior data are a factor of 100 too high in their Fig. 1. When this error is corrected, the
limiting size of~1 nm, making particles/cavities without alternative sources of ledges data obtained in their study agree much more closely with average values in pric
(dislocations) unable to adjust their shape. work.



October 2000 The Wulff Shape of Alumina 2569

(3) Effect of Surface Energy Anisotropy surface energies in metallic systef?s>? and recent measure

In modeling the temporal evolution of particle and pore shapes, ments of relative surface energies in undofféd“*>and doped
the possibility that different crystal faces would have different alumina$*“*#suggest that actual variations i are much
surface energies was incorporated. Previously, in considering theSmaller than considered in the calculation, such variations are n
effects of size, Shape’ and temperature, the two enevgiaﬂd‘yz IIker to be a maJOI’.SOUrce of erro_r n estlmatgs Of diffusivities. In
were set equal. Under these conditio, is unity for the contrast, unrecognized changes in the rate-limiting transport prc
stretched square. To examine the effects of surface energy anisotcess from diffusion to SALK, and assessment of morphology
ropy, two sets of calculations were performed for the stretched changes that involve growth or decay of perturbations on a stabl
square. In both, the temperature was fixed at 1600°C fapd/as facet, can lead to significant errors in estimates of the surface
set equal to 10™* m?. A range ofR., values, from 0.5t 2.0, was  diffusivity.
then considered. In one calculation, the valug pis held fixed at
1 J/n?, and changes iR, are accommodated by changing the
value of vy,; in this case, the average surface energy of the V. Summary and Conclusions
equilibrium shape crystal increasesRag increases. The results of
this calculation are shown in Fig. 8(a). In the second calculation, Models have been developed that allow calculations of the
the values ofboth vy, andy, are adjusted to accommodate the times required to adjust the shape of facetted rodlike particles an

change inR,, but in a way that maintains thaveragesurface facetted pore channels by surface diffusion. The modeling has use
energy of the equilibrium shape crystal constant at 12.J/fhe differential geometry and weighted mean curvature based descrij
results of this calculation are presented in Fig. 8(b). In both figures, tions of the driving force. Two different methods of describing the
the curves terminate wheR, reaches 1.(R., potential gradients driving the surface flux have been presente

When the effect of varyinR,, is assessed, one concludes that and compared. The method based on a continuously varyin
the details of the anisotropy have only a minor influence on the potential is more rigorous, but unfortunately also more difficult to
time required to reach the near-equilibrium shape. When the apply to 3-D problems. It was thus of interest to determine the
average value of the surface energy is allowed to vary, Fig. 8(a), magnitude of the errors that arise when simpler approximations ¢
afactor of 4 change iR, results in only a factor=2 change in the the driving force, approximations that are more easily applied tc
time at whichR, reaches 1.(,, WhenR, = 3, the predicted 3-D problems, are used in modeling the behavior.
times to reach a giveR, value vary by less than or equal to a The results suggest that the crystal/cavity size and the tempe
factor of ~1.5. When the average value 9¢fis held constant, the ature, through its influence on the surface diffusivity, are the ke
times at whichR, reaches 1.(R,, differ by only a few percent. In factors influencing the rate of pore shape evolution. The initial
this case, wheR, = 3, the times required to achieve the associated shapes considered in the modeling deviate significantly from th
shapes differ more substantially, varying by a factor of up-t Wulff shape. Under these conditions, although the details of th
Nonetheless, the results imply that if measured valueR adire feature shape, the formulation of the chemical potential gradien
interpreted using a model that assumes the surface energies of aland variations in the details of the surface energy anisotropy d
facets are equal, this assumption would introduce less thax a 2 influence the evolution times, the changes owing to these factor
error into the inferred value dd.. Since measurements of relative  tend to be small, of the order of a factor of 3 or less. As a result

107 1 Py 10 S
' -1 2] i
A,=10 "m : . A, = 107112
T =1600°C 1 r = o
- in= ) ] i\ /=2 T =BG -
y1=1]/m" = constant | I Averagej/=lj/m2 |

Ya/ly1=1 Yy /Y1 =1
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Fig. 8. Predicted effect of surface energy anisotropy on the shape equilibration kinetics of a stretched squayg.isrhl fixed at 1 J/fy and changes
in R, are accommodated by changes in the valug,ofn (b), the values obothv; andvy, are adjusted to accommodate the changg.jpbut theaverage
surface energy of the equilibrium shape crystal is maintained constant a1 J/m
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the general features of the evolution are not affected significantly

by the subtleties of the initial shape, approximate treatments of the

potential gradient, or the ultimate Wulff shape.

Significant simplifications have been made in the modeling.
The surface diffusivity is assumed to be isotropic; differing
diffusivities on adjoining facets introduce a discontinuity in the
potential gradient at the facet edtfeThe analysis does not address
the nucleation of new facets, merely the displacement of those
originally present. Perhaps most importantly it implicitly assumes
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